Loading…

Mixing of homogeneous solids in bubbling fluidized beds: Theoretical modelling and experimental investigation using digital image analysis

An automated non-intrusive image analysis method has been developed for following the course of solids mixing in two-dimensional bubbling fluidized beds. In this investigation, experimental data have been obtained on the axial mixing of uniform solids. Oscillations in the concentration response, res...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 1993, Vol.48 (12), p.2251-2265
Main Authors: Lim, Kok S., Gururajan, Venkata S., Agarwal, Pradeep K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An automated non-intrusive image analysis method has been developed for following the course of solids mixing in two-dimensional bubbling fluidized beds. In this investigation, experimental data have been obtained on the axial mixing of uniform solids. Oscillations in the concentration response, resulting from the gross circulation of the solids, have been observed experimentally. These oscillations become increasingly more prominent as the bed particle size increases. These measurements have been used to evaluate the three-phase counter-current back-mixing model (Gwyn et al.). The bubble parameters required for the model were obtained from independent experiments conducted as a part of this investigation; the exchange coefficient however, was found by parameter estimation using the solids mixing data. With this choice of parameters, the counter-current flow model has been found to predict the experimental trends reasonably well. The estimated values for the exchange coefficient do not compare favourably with the predictions of the models available in the literature (Yoshida and Kunii, and Chiba and Kobayashi). These models predict that the wake exchange coefficient should increase with increase in the minimum fluidization of the bed particles. Our results, on the other hand, show that the wake exchange coefficient increases with U O/ U mf for U O/U mf < 3 and the values, in this region are independent of the particle size. In line with these results, the experimental measurements of Chiba and Kobayashi, for injected bubbles in a two-dimensional fluidized bed of particles smaller than those used in this investigation, are found to be in excellent agreement with the lower bound of our estimations.
ISSN:0009-2509
1873-4405
DOI:10.1016/0009-2509(93)80241-H