Loading…
Thermal constraints on disposal of heat-emitting waste in argillaceous rocks
Although the post-closure thermal phase of a repository containing heat-emitting radioactive wastes is likely to be of comparatively short duration when judged against performance assessment time-scales, the effects of temperature increase and associated thermal gradients within an argillaceous host...
Saved in:
Published in: | Engineering geology 1996, Vol.41 (1), p.5-16 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although the post-closure thermal phase of a repository containing heat-emitting radioactive wastes is likely to be of comparatively short duration when judged against performance assessment time-scales, the effects of temperature increase and associated thermal gradients within an argillaceous host-rock are likely to be wide-ranging and include: (a) geomechanical effects on the rock-mass and engineered structures (linings, emplacement boreholes, etc.), (b) perturbation of groundwater pressures and flow by ‘aquathermal mechanisms’, (c) possible near-field effects on mass transport properties and mechanisms (e.g. coupled flow phenomena), and (d) effects on the chemical evolution of the near-field environment. Maximum allowable temperature in a repository is likely to be constrained by host-rock and/or clay buffer/backfill thermal behaviour. Given the diverse range of the thermal responses, the identification of a primary constraint on near-field temperature and the specification of a maximum allowable temperature remains problematic. |
---|---|
ISSN: | 0013-7952 1872-6917 |
DOI: | 10.1016/0013-7952(95)00046-1 |