Loading…

Natural and forced convection of molten silicon during Czochralski single crystal growth

Natural and/or forced convection of molten silicon during Czochralski single crystal growth was directly observed using X-ray radiography with solid tracers for various crystal and crucible rotation speeds, and temperature distribution in a crucible holder. Downflow attributed to natural convection...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 1989-02, Vol.94 (2), p.412-420
Main Authors: Kakimoto, Koichi, Eguchi, Minoru, Watanabe, Hisao, Hibiya, Taketoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Natural and/or forced convection of molten silicon during Czochralski single crystal growth was directly observed using X-ray radiography with solid tracers for various crystal and crucible rotation speeds, and temperature distribution in a crucible holder. Downflow attributed to natural convection in the center of a crucible which had been simulated by numerical calculation was scarcely observed with and without crucible rotation. Numerical simulation of the molten silicon was carried out by a packaged code of “FLUENT”; in the calculation, measured non-axisymmetric temperature distribution in a crucible holder was adopted. Unidirectional flow with and without crucible rotations can be qualitatively explained by the numerical simulation with non-axisymmetric temperature distribution in the crucible holder. The particle path attributed to natural convection near the solid-liquid interface was suppressed downward with increase in crystal rotation speed. The phenomena can be explained by a generation of forced convection beneath the rotating crystal.
ISSN:0022-0248
1873-5002
DOI:10.1016/0022-0248(89)90016-X