Loading…
The evolution of mechanical property change in irradiated austenitic stainless steels
The evolution of mechanical properties in austenitic stainless steels during irradiation is reviewed. Changes in strength, ductility and fracture toughness are strongly related to the evolution of the damage microstructure and microstructurally-based models for strengthening reasonably correlate the...
Saved in:
Published in: | Journal of nuclear materials 1993-11, Vol.206 (2), p.287-305 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The evolution of mechanical properties in austenitic stainless steels during irradiation is reviewed. Changes in strength, ductility and fracture toughness are strongly related to the evolution of the damage microstructure and microstructurally-based models for strengthening reasonably correlate the data. Irradiation-induced defects promote work softening and flow localization which in turn leads to significant reductions in ductility and fracture toughness beyond about 10 dpa. The effects of irradiation on fatigue appear to be modest except at high temperature where helium embrittlement becomes important. The swelling-independent component of irradiation creep strain increases linearly with dose and is relatively insensitive to material variables and irradiation temperature, except at low temperatures where accelerated creep may occur as a result of low vacancy mobility. Creep rupture life is a strong function of helium content, but is less sensitive to metallurgical conditions. Irradiation-induced stress corrosion cracking appears to be related to the evolution of radiation-induced segregation/depletion at grain boundaries, and hence may not be significant at low irradiation temperatures. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/0022-3115(93)90129-M |