Loading…
Polygonal approximation using a competitive Hopfield neural network
Polygonal approximation plays an important role in pattern recognition and computer vision. In this paper, a parallel method using a Competitive Hopfield Neural Network (CHNN) is proposed for polygonal approximation. Based on the CHNN, the polygonal approximation is regarded as a minimization of a c...
Saved in:
Published in: | Pattern recognition 1994-11, Vol.27 (11), p.1505-1512 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polygonal approximation plays an important role in pattern recognition and computer vision. In this paper, a parallel method using a Competitive Hopfield Neural Network (CHNN) is proposed for polygonal approximation. Based on the CHNN, the polygonal approximation is regarded as a minimization of a criterion function which is defined as the arc-to-chord deviation between the curve and the polygon. The CHNN differs from the original Hopfield network in that a competitive winner-take-all mechanism is imposed. The winner-take-all mechanism adeptly precludes the necessity of determining the values for the weighting factors in the energy function in maintaining a feasible result. The proposed method is compared to several existing methods by the approximation error norms
L
2 and
L
∞ with the result that promising approximation polygons are obtained. |
---|---|
ISSN: | 0031-3203 1873-5142 |
DOI: | 10.1016/0031-3203(94)90128-7 |