Loading…

Computer generated reaction modelling: Decomposition and encoding algorithms for determining species uniqueness

The concept of computer generated reaction modelling was broadened through the development of a general planar graph algorithm for determination of isomorphism. The previous capability was limited by its inability to determine the uniqueness of ring-containing species unambiguously, restricting the...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 1996, Vol.20 (2), p.113-129
Main Authors: Broadbelt, L.J., Stark, S.M., Klein, M.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concept of computer generated reaction modelling was broadened through the development of a general planar graph algorithm for determination of isomorphism. The previous capability was limited by its inability to determine the uniqueness of ring-containing species unambiguously, restricting the application of automatic network generation to non-cyclic species or cyclic species where the ring was not involved in the chemical transformation. In this work, the systematic identification of both noncyclic and cyclic species was carried out by constructing the structurally explicit decomposition tree, an assembly of the biconnected components of the graph, from which a graph invariant unique string code was obtained by iteratively encoding and ordering the subtrees of the decomposition tree. A lexicographical comparison of the unique string code of the candidate species with the string codes of all previously generated species with the same empirical formula allowed unambiguous determination of species uniqueness.
ISSN:0098-1354
1873-4375
DOI:10.1016/0098-1354(94)00009-D