Loading…
Cluster validity for fuzzy clustering algorithms
The proportion exponent is introduced as a measure of the validity of the clustering obtained for a data set using a fuzzy clustering algorithm. It is assumed that the output of an algorithm includes a fuzzy nembership function for each data point. We show how to compute the proportion of possible m...
Saved in:
Published in: | Fuzzy sets and systems 1981-01, Vol.5 (2), p.177-185 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The proportion exponent is introduced as a measure of the validity of the clustering obtained for a data set using a fuzzy clustering algorithm. It is assumed that the output of an algorithm includes a fuzzy nembership function for each data point. We show how to compute the proportion of possible memberships whose maximum entry exceeds the maximum entry of a given membership function, and use these proportions to define the proportion exponent. Its use as a validity functional is illustrated with four numerical examples and its effectiveness compared to other validity functionals, namely, classification entropy and partition coefficient. |
---|---|
ISSN: | 0165-0114 1872-6801 |
DOI: | 10.1016/0165-0114(81)90015-4 |