Loading…
Dimer structure as a minimum cooperative subunit of small heat-shock proteins
Recently, it has been shown that small heat-shock proteins (Hsp25, Hsp27) are molecular chaperones. They bind to thermally unfolded proteins and can also assist refolding of denatured proteins. Mammalian small Hsps can form oligomeric structures of about 32 subunits. Until now, no data about coopera...
Saved in:
Published in: | Biochimica et biophysica acta 1995-12, Vol.1253 (2), p.163-168 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, it has been shown that small heat-shock proteins (Hsp25, Hsp27) are molecular chaperones. They bind to thermally unfolded proteins and can also assist refolding of denatured proteins. Mammalian small Hsps can form oligomeric structures of about 32 subunits. Until now, no data about cooperativity and stability of the interactions between the subunits of sHsps are available. To analyze these interactions we studied mouse Hsp25 and human Hsp27 by difference adiabatic scanning microcalorimetry (DASM) and circular dichroism (CD). Here we show that, according to DASM data, the minimum cooperatively melting structure is a sHsp-dimer. CD data indicate that Hsp25 major secondary structure, the β-pleated conformation ,is resistant to acidic influence up to pH 4.5 and, at neutral pH values, to heat treatment up to 60°C. The melting pattern of Hsp25/27 bears resemblance to α-crystallinis. CD data indicate similar secondary, tertiary and quaternary structures of the proteins compared. This finding is in agreement with the revealed homology of primary structure of these proteins and their common chaperone function. |
---|---|
ISSN: | 0167-4838 0006-3002 1879-2588 |
DOI: | 10.1016/0167-4838(95)00135-X |