Loading…
Chemisorbed-molecule potential energy surfaces and DIET processes
We report the use of the local-density approximation, with and without gradient corrections, for the calculation of ground-state potential energy surfaces (PESs) for chemisorbed molecules. We focus on chemisorbed NO and ammonia on Pd(1 1 1) and compare our results with the latest experimental inform...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 1995-06, Vol.101 (1), p.22-30 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the use of the local-density approximation, with and without gradient corrections, for the calculation of ground-state potential energy surfaces (PESs) for chemisorbed molecules. We focus on chemisorbed NO and ammonia on Pd(1 1 1) and compare our results with the latest experimental information. We then turn to two aspects of
excited-state PESs. First, we compare first-principles calculations of the forces on an ammonia ion as a function of distance from the surface. We find that the image-charge model fails significantly at distances which are the most relevant for dynamics, closer than ∼3 Å, and discuss reasons for the failure. We then summarize a purely electronic adiabatic model of the moleuule-surface bond and use empirical parameters to estimate hot carrier-produced excited states of chemisorbed NO. We find multiple PESs and a novel interpretation of the
π
∗
resonance, seen in inverse photoemission. |
---|---|
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/0168-583X(95)00292-8 |