Loading…
Abrasive wear of nitrogen-implanted boron-coated Ti-6Al-4V and temperature effect on microhardness and sliding friction coefficient
Boron was electron-gun evaporated onto manually polished surfaces of Ti-6Al-4V and bombarded with 100 keV nitrogen ions for different doses. The highest increase in Knoop microhardness was observed for the highest dose considered in this work, i.e., 10 17ions cm -2, which was maintained for subseque...
Saved in:
Published in: | Applied surface science 1993, Vol.64 (2), p.133-146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boron was electron-gun evaporated onto manually polished surfaces of Ti-6Al-4V and bombarded with 100 keV nitrogen ions for different doses. The highest increase in Knoop microhardness was observed for the highest dose considered in this work, i.e., 10
17ions cm
-2, which was maintained for subsequent abrasive wear investigation by optical and scanning electron microscopies. Relative changes of Knoop microhardness and sliding friction coefficient as a function of implantation temperature (room temperature, 150, 300, 450 and 600°C) were measured. The optimal improvements obtained for the 450°C implantation correlate with the higher nitrogen retention as evidenced by XPS depth-concentration analysis. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/0169-4332(93)90274-F |