Loading…
Origin of the 0.97 eV luminescence in irradiated silicon
Optical detection of magnetic resonance studies are described for the well-studied optical center with zero phonon line at 0.97 eV in irradiated silicon. Analysis of the S=1 ODMR spin Hamiltonian reveals a low symmetry (Clh) center and a resolved 29Si hyperfine interaction with a single silicon atom...
Saved in:
Published in: | Physica B + C 1983-02, Vol.116 (1-3), p.258-263 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical detection of magnetic resonance studies are described for the well-studied optical center with zero phonon line at 0.97 eV in irradiated silicon. Analysis of the S=1 ODMR spin Hamiltonian reveals a low symmetry (Clh) center and a resolved 29Si hyperfine interaction with a single silicon atom. In a specially enriched 13C doped sample we find additional hf interactions with two equivalent carbon atoms. At elevated temperatures, the defect reorients easily from one Clh distortion to another around a common 〈111t> axis; during this reorientation the spin density remains located on the same silicon atom and the same carbon pair. From these results we construct a model comprising two adjacent (substitutional) carbon atoms and an interstitial silicon atom which has distorted out from a bond-centered position. We conclude that the same defect gives rise to the Si-G11 EPR spectrum when positively charged. |
---|---|
ISSN: | 0378-4363 |
DOI: | 10.1016/0378-4363(83)90256-5 |