Loading…
Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite
This paper presents the results of a study on the effects of matrix microstructure and particle distribution on the fracture of an aluminum alloy metal matrix composite containing 20% by volume SiC particulate. The matrix microstructure was systematically varied by heat treating to either an under-...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1989, Vol.107, p.241-255 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the results of a study on the effects of matrix microstructure and particle distribution on the fracture of an aluminum alloy metal matrix composite containing 20% by volume SiC particulate. The matrix microstructure was systematically varied by heat treating to either an under- or over-aged condition of equivalent strength, and was characterized using a combination of techniques. Quantitative metallographic techniques were utilized to characterize the material with respect to size, size distribution, and particle clustering, while transmission electron microscopy was utilized to characterize the details of the matrix microstructure in addition to the effects of aging on the character of the particle/matrix interfaces. Fracture experiments were conducted on smooth tensile, notched bend, shortrod toughness, and on specimens designed to permit controlled crack propagation, in an attempt to determine the effects of matrix microstructure and clustered regions on the details of damage accumulation. Large effects of microstructure on the notched properties were obtained with little effect of microstructure on tensile ductility. It is shown that the micromechanisms of fracture are significantly affected by the details of the matrix microstructure, interface character, and degree of clustering in the material. Fracture of the SiC was predominant in the underaged materials, with a preference for failure in the matrix and near the interface in the overaged material. Metallographic and fractographic analyses revealed that clustered regions were preferred sites for damage initiation in both the aging conditions tested, while preliminary results additionally indicate that damage accumulation ahead of a propagating crack also tended to occur in clustered regions. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/0921-5093(89)90392-4 |