Loading…
Monte-Carlo calculations of low energy positrons in copper
An analogue Monte-Carlo code has been used to simulate the transport of positrons in copper with an incoming energy range of 60 eV-30 keV. The simulation technique is based mainly on the screened Rutherford differential cross section with a spin relativistic correction factor for elastic scattering...
Saved in:
Published in: | Applied radiation and isotopes 1996-02, Vol.47 (2), p.185-189 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analogue Monte-Carlo code has been used to simulate the transport of positrons in copper with an incoming energy range of 60 eV-30 keV. The simulation technique is based mainly on the screened Rutherford differential cross section with a spin relativistic correction factor for elastic scattering including some extra total cross section information for low energies, Gryzinski's semi-empirical expression was used to simulate energy loss due to inelastic scattering and the Liljequist and Gryzinski models to calculate the total inelastic scattering cross section. The calculated results are compared with experimental data and those from other calculations. Good agreement is observed except in cases of backscattering. |
---|---|
ISSN: | 0969-8043 1872-9800 |
DOI: | 10.1016/0969-8043(95)00229-4 |