Loading…
Modelling of non-Newtonian purely viscous flow through isotropic high porosity synthetic foams
A unified modelling theory for the prediction of the pressure drop of non-Newtonian purely viscous flow through isotropic high porosity synthetic foams is proposed. The model is derived by volumetrically averaging the equations of motion over an arbitrary two-phase system of stationary solids and a...
Saved in:
Published in: | Chemical engineering science 1999-03, Vol.54 (5), p.645-654 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A unified modelling theory for the prediction of the pressure drop of non-Newtonian purely viscous flow through isotropic high porosity synthetic foams is proposed. The model is derived by volumetrically averaging the equations of motion over an arbitrary two-phase system of stationary solids and a traversing fluid. Closure is obtained by using a formerly introduced rectangular representation of the pore space morphology. The shear rate dependency of the viscosity is incorporated through the shear stress in terms of the power-law model. The proposed model, which is based purely on physical principles with no artificial adjusting parameters, is compared to other predictive models in terms of friction factor as a function of the Reynolds number. Predicted pressure drop results are also compared to published experimental results to verify the validity of the model. |
---|---|
ISSN: | 0009-2509 1873-4405 |
DOI: | 10.1016/S0009-2509(98)00264-4 |