Loading…

A synthetic signal peptide blocks import of precursor proteins destined for the mitochondrial inner membrane or matrix

A peptide corresponding to amino acids 1-27 of preornithine carbamyltransferase (pOCT) has been chemically synthesized. When added to energized mitochondria in vitro, 20 microM of the peptide, designated pO(1-27), resulted in a collapse of the electrochemical potential across the mitochondrial inner...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1985-12, Vol.260 (30), p.16045-16048
Main Authors: Gillespie, L L, Argan, C, Taneja, A T, Hodges, R S, Freeman, K B, Shore, G C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A peptide corresponding to amino acids 1-27 of preornithine carbamyltransferase (pOCT) has been chemically synthesized. When added to energized mitochondria in vitro, 20 microM of the peptide, designated pO(1-27), resulted in a collapse of the electrochemical potential across the mitochondrial inner membrane. This effect on transmembrane potential was not observed, however, when pO(1-27) was added to energized mitochondria under conditions that support in vitro import of precursor proteins (i.e. in the presence of reticulocyte lysate). The latter finding, therefore, made possible an examination of the ability of pO(1-27) to block import of homologous and heterologous proteins into the organelle. At 5-10 microM, pO(1-27) prevented import of pOCT in vitro; inhibition was overcome by increasing the concentration of pOCT. In contrast, pO(16-27), a peptide corresponding to amino acids 16-27 of pOCT and exhibiting a charge:mass ratio similar to pO(1-27) had no such inhibitory effect. pO(1-27) blocked import of other unrelated precursor proteins destined either for the mitochondrial matrix (pre-malate dehydrogenase and a hybrid protein containing the signal sequence of pre-carbamyl phosphate synthetase) or for the mitochondrial inner membrane (pre-thermogenin).
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)36195-1