Loading…

Unbalanced ribosome assembly in Saccharomyces cerevisiae expressing mutant 5 S rRNAs

Mutant 5 S rRNA genes were expressed in Saccharomyces cerevisiae to further define the function of the ribosomal 5 S RNA. RNA synthesis and utilization were assayed using previously constructed markers which have been shown to be functionally. neutral and easily detected by gel electrophoresis. Most...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1992-08, Vol.267 (23), p.16177-16181
Main Authors: Van Ryk, D.I. (University of Guelph, Guelph, Ontario, Canada), Lee, Y, Nazar, R.N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutant 5 S rRNA genes were expressed in Saccharomyces cerevisiae to further define the function of the ribosomal 5 S RNA. RNA synthesis and utilization were assayed using previously constructed markers which have been shown to be functionally. neutral and easily detected by gel electrophoresis. Most mutations were found not to affect the growth rate because they were poorly expressed or could be accommodated effectively in the ribosomal structure. Two of the mutants, Y5A99U56U57 and Y5U90i5 adversely affected cell growth as well as protein synthesis in vitro. Polyribosome profiles in both of these mutants were substantially shorter, and an analysis of the ribosomal subunit composition revealed a significant imbalance with a 25-35% excess in 40 S subunits. Kinetic analyses of RNA labeling indicated very low cellular levels of mutant RNA either because it was poorly expressed (Y5U90i5) or rapidly degraded before being incorporated into mature 60 subunits (Y5A99U56U57). The results suggest that the 5 S RNA is required for the assembly of stable ribosomal 60 S subunits and raise the possibility that this RNA or, more likely, its corresponding ribonucleoprotein complex is critical for subunit assembly or even RNA processing
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)41983-7