Loading…
The Na+/H+ exchanger is constitutively activated in P19 embryonal carcinoma cells, but not in a differentiated derivative. Responsiveness to growth factors and other stimuli
We have examined the functional properties and growth factor responsiveness of the plasma membrane Na+/H+ exchanger in pluripotent P19 embryonal carcinoma (EC) cells and in a differentiated mesodermal derivative (MES-1) by analyzing the recovery of cytoplasmic pH (pHi) from an acute acid load under...
Saved in:
Published in: | The Journal of biological chemistry 1987-07, Vol.262 (20), p.9621-9628 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have examined the functional properties and growth factor responsiveness of the plasma membrane Na+/H+ exchanger in pluripotent P19 embryonal carcinoma (EC) cells and in a differentiated mesodermal derivative (MES-1) by analyzing the recovery of cytoplasmic pH (pHi) from an acute acid load under bicarbonate-free conditions. In the absence of exogenous growth factors, the mean steady-state pHi of undifferentiated P19 cells (7.49 +/- 0.03) is 0.55 unit higher than the value of differentiated MES-1 cells (6.94 +/- 0.01). In both cell types, recovery of pHi from an NH+4-induced acid load follows an exponential time course and is entirely mediated by the amiloride-sensitive Na+/H+ exchanger in the plasma membrane. Kinetic analysis indicates that the higher steady-state pHi in P19 EC cells is due to an alkaline shift in the pHi sensitivity of the Na+/H+ exchange rate, as compared to that in MES-1 cells. The Na+/H+ exchanger of MES-1 cells is responsive to epidermal growth factor, platelet-derived growth factor, serum, phorbol esters, and diacylglycerol, as shown by a rapid amiloride-sensitive rise in pHi of 0.15-0.35 unit. This mitogen-induced alkalinization is attributable to an alteration in the pHi sensitivity of the exchanger. In contrast, the Na+/H+ exchanger of P19 EC cells fails to respond to any of these stimuli. Similarly, hypertonic medium rapidly activates the Na+/H+ exchanger in MES-1, but not in P19 EC cells. We conclude that the Na+/H+ exchanger in undifferentiated P19 EC stem cells is maintained in a fully activated state which is unaffected by extracellular stimuli, as if signal pathways normally involved in growth factor action are constitutively operative. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)47979-3 |