Loading…

Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and nitric oxide

The role of extracellular superoxide in the pathogenesis of vasogenic edema was studied using transgenic mice expressing a 5-fold increase in extracellular superoxide dismutase (EC-SOD) activity in their brains. Increased EC-SOD expression offered significant protection against edema development aft...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1993-07, Vol.268 (21), p.15394-15398
Main Authors: OURY, T. D, PIANTADOSI, C. A, CRAPO, J. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of extracellular superoxide in the pathogenesis of vasogenic edema was studied using transgenic mice expressing a 5-fold increase in extracellular superoxide dismutase (EC-SOD) activity in their brains. Increased EC-SOD expression offered significant protection against edema development after cold-induced injury (44% less edema than nontransgenic littermates, p < 0.05). Since iron may contribute to vasogenic edema by catalyzing the production of hydroxyl radical from superoxide and hydrogen peroxide, the effects of the chelator deferoxamine were studied. Deferoxamine reduced edema formation after cold-induced injury (43% less edema than controls, p < 0.05); however, treatment with iron-saturated deferoxamine also reduced edema development in mice (32-48% less edema, p < 0.05). This suggested that the protection offered by deferoxamine was independent of its ability to chelate iron. An iron-independent mechanism by which superoxide can contribute to vasogenic edema is via reaction with nitric oxide to produce the potentially toxic peroxynitrite anion, which is also scavenged by deferoxamine. Mice treated with an inhibitor of nitric oxide synthase were protected against cold-induced edema (37% less edema, p < 0.05). EC-SOD transgenic mice received no additional protection by inhibition of nitric oxide synthesis, supporting this novel alternative mechanism of edema formation.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)82270-0