Loading…

Aldose reductase from human psoas muscle

Aldose reductase (ALR2) has been purified to homogeneity from human psoas muscle. From sodium dodecyl sulfate-polyacrylamide electrophoresis the enzyme is monomeric and has a molecular weight of 37,000. ALR2 catalyzes the primarily NADPH-dependent reduction of a wide variety of aldehydes, although t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1989-02, Vol.264 (5), p.2906-2911
Main Authors: Morjana, N A, Flynn, T G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aldose reductase (ALR2) has been purified to homogeneity from human psoas muscle. From sodium dodecyl sulfate-polyacrylamide electrophoresis the enzyme is monomeric and has a molecular weight of 37,000. ALR2 catalyzes the primarily NADPH-dependent reduction of a wide variety of aldehydes, although the enzyme can also utilize NADH. The best substrates for ALR2 are aromatic aldehydes (e.g. pyridine-3-aldehyde; Km = 9 µM; kcat/Km = 150,000 s−1 M−1), while among aldoses DL-glyceraldehyde is the preferred substrate (Km = 72 µM; kcat/Km = 17,250). Low (100 µM) concentrations of CaCl2 and CaSO4 cause a marked inhibition (90%) of ALR2 as do higher concentrations (0.2 M) of MgCl2. (NH4)2SO4 caused a 2-fold activation of ALR2. The enzyme is also inhibited by quercetin and the commercially developed aldose reductase inhibitors alrestatin and sorbinil. ALR2 is inhibited only very slightly by sodium valproate and barbiturates. ALR2 cross-reacts immunologically with human brain and human placental aldose reductase and with ALR2 from monkey tissue. There is no precipitin cross-reaction of ALR2 with aldose reductases from other species nor with human aldehyde reductase 1 (ALR1) or with ALR1 from other species. The data show that human muscle is a new and relatively rich source of a monomeric NADPH/NADH reductase which is clearly identifiable as aldose reductase.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)81698-8