Loading…

Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets

Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely r...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1985-01, Vol.260 (2), p.956-962
Main Authors: Ă“ROURKE, F. A, HALENDA, S. P, ZAVOICO, G. B, FEINSTEIN, M. B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely released by ionophore A23187. Inositol 1,4,5-trisphosphate, in a dose-dependent manner (0.5-5.0 microM), caused the rapid release (less than 5 s) of 40-70% of the total A23187-releasable store of accumulated Ca2+. The membrane vesicles that release accumulated Ca2+ in response to inositol 1,4,5-trisphosphate were enriched in enzymes characteristically found in smooth endoplasmic reticulum. These results support the hypothesis that inositol 1,4,5-trisphosphate, produced by the hydrolysis of phosphatidylinositol 1,4-bisphosphate in response to stimulation of cell surface receptors, is a second messenger mediating the release of Ca2+ from intracellular storage sites.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(20)71193-2