Loading…
Molecular, electronic structure and conformational flexibility of the 1,6-dihydropyrimidine, 4,5-dihydrofuro[2,3-d]pyrimidine and their oxo, imino and methylene derivatives
Molecular and electronic structures of 1,6-dihydropyrimidine, 4,5-dihydrofuro[2,3-d]pyrimidine and their oxo, imino and methylene derivatives have been studied using the semiempirical quantum-chemical method AM1. The equilibrium geometry of all molecules is planar. These results were confirmed by X-...
Saved in:
Published in: | Journal of molecular structure 1996-11, Vol.385 (1), p.55-63 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular and electronic structures of 1,6-dihydropyrimidine, 4,5-dihydrofuro[2,3-d]pyrimidine and their oxo, imino and methylene derivatives have been studied using the semiempirical quantum-chemical method AM1. The equilibrium geometry of all molecules is planar. These results were confirmed by X-ray structural investigations of the 1-oxo- and 1-imino derivatives of 2,5-dimethyl-3-(2,2,2-trichloroethyl)-4,5-dihydrofuro[2,3-d]pyrimidine. However, the dihydropyrimidine ring in all compounds possesses a degree of conformational flexibility. The transition from a planar equilibrium conformation to a distorted sofa with the CNCC torsion angle ± 20° causes an increase of energy less than 1.5 kcal mol
−1. The factors that determine this property of the dihydroheterocycle (bending strain, non-aromaticity, conjugation, 1,2-allylic strain) have been considered. |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/S0022-2860(96)09345-3 |