Loading…
Simulations of metastable decay in two- and three-dimensional models with microscopic dynamics
We present a brief analysis of the crossover phase diagram for the decay of a metastable phase in a simple dynamic lattice-gas model of a two-phase system. We illustrate the nucleation-theoretical analysis with dynamic Monte Carlo (MC) simulations of a kinetic Ising lattice gas on square and cubic l...
Saved in:
Published in: | Journal of non-crystalline solids 2000-09, Vol.274 (1), p.356-363 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a brief analysis of the crossover phase diagram for the decay of a metastable phase in a simple dynamic lattice-gas model of a two-phase system. We illustrate the nucleation-theoretical analysis with dynamic Monte Carlo (MC) simulations of a kinetic Ising lattice gas on square and cubic lattices. We predict several regimes in which the metastable lifetime has different functional forms, and we provide estimates for the crossovers between the different regimes. In the multidroplet regime, the Kolmogorov–Johnson–Mehl–Avrami (KJMA) theory for the time dependence of the order-parameter decay and the two-point density correlation function allows extraction of both the order parameter in the metastable phase and the interfacial velocity from the simulation data. |
---|---|
ISSN: | 0022-3093 1873-4812 |
DOI: | 10.1016/S0022-3093(00)00223-4 |