Loading…

An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration

The results of an experimental study on both pulsating and steady Newtonian fluid flow in an initially stretched rubber tube subjected to external vibration are reported. A circulating loop system was designed to maintain constant hydrostatic pressure throughout the tests so that the influence of ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2003-09, Vol.266 (2), p.355-367
Main Authors: Zhang, Y.L., Reese, J.M., Gorman, D.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The results of an experimental study on both pulsating and steady Newtonian fluid flow in an initially stretched rubber tube subjected to external vibration are reported. A circulating loop system was designed to maintain constant hydrostatic pressure throughout the tests so that the influence of external excitation on the fluid flow could be properly distinguished. The effects of fluid flow velocity and initial stretch rates on the dynamic response and damping of the tube conveying fluid were examined, and it was observed that damping ratios increase with increasing flow velocities, and generally decrease with increasing initial stretch rates for the tube conveying fluid. It was also noted that dynamic responses increase with increasing initial stretch rates, and decrease with increasing flow velocities. The effect of external vibration on fluid flow rates is small in a tube with a thickness-to-radius ratio ( D out − D in )/ D in =0.617. Fluid pressures vary, in terms of frequency and amplitude, with external vibration as well as Womersley number.
ISSN:0022-460X
1095-8568
DOI:10.1016/S0022-460X(02)01625-5