Loading…
Protection against dextran sulfate sodium-induced colitis by microspheres of ellagic acid in rats
Ellagic acid (EA), a naturally occurring plant phenol, has the antioxidant and anti-inflammatory activities. In the present study, we examined the effect of EA contained in microspheres on the ulcerative colitis induced experimentally in rats by dextran sulfate sodium (DSS). Experimental colitis was...
Saved in:
Published in: | Life sciences (1973) 2002-07, Vol.71 (7), p.827-839 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ellagic acid (EA), a naturally occurring plant phenol, has the antioxidant and anti-inflammatory activities. In the present study, we examined the effect of EA contained in microspheres on the ulcerative colitis induced experimentally in rats by dextran sulfate sodium (DSS). Experimental colitis was induced in male Fisher 344 rats by daily treatment with 3% DSS solution in drinking water for 7 days. EA of microspheres (mcEA: 1∼10 mg/kg as EA contents) was administered p.o. twice daily for 6 days. In a preliminary study, we found that these microsphere capsules, when administered p.o., are effectively dissolved in the proximal to the ileo-cecal junction and distributed to the terminal ileum and the colon. The ulceration area, colon length, and mucosal myeloperoxidase (MPO) activity as well as thiobarbituric acid-reactive substances (TBARS) were measured on 7th day after the onset of DSS treatment. The DSS treatment for 7 days caused severe mucosal lesions in the colon, accompanied with the increases of MPO activity and TBARS as well as the decreases of body weight gain and colon length. Administration of mcEA reduced the severity of DSS-induced colitis in a dose-dependent manner, and a significant effect was observed at 10 mg/kg, the ED50 being 2.3 mg/kg. This mcEA treatment also significantly mitigated changes in various biochemical parameters in the colonic mucosa induced by DSS. Although plain EA (without using microspheres) was also effective in reducing the severity of DSS-induced colitis, this effect was much less potent as compared with that of mcEA; the ED50 was about 15 times higher than that of mcEA. In addition, a significant effect on DSS-induced colitis was also obtained by intra-rectal administration of superoxide dismutase, an anti-oxidative agent. These results suggest that EA prevents the ulcerative colitis induced by DSS, probably by radical scavenging and/or anti-oxidative actions. The microspheres used in this study may be useful for delivering an orally administered drug specifically to the colon. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/S0024-3205(02)01737-X |