Loading…

TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate

Capsiate is a capsaicin-like ingredient of a non-pungent cultivar of red pepper, CH-19 sweet. To elucidate the mechanisms underlying the non-pungency of capsiate, we investigated whether capsiate activates the cloned capsaicin receptor, TRPV1 (VR1). In patch-clamp experiments, capsiate was found to...

Full description

Saved in:
Bibliographic Details
Published in:Neuropharmacology 2003-06, Vol.44 (7), p.958-967
Main Authors: Iida, T., Moriyama, T., Kobata, K., Morita, A., Murayama, N., Hashizume, S., Fushiki, T., Yazawa, S., Watanabe, T., Tominaga, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capsiate is a capsaicin-like ingredient of a non-pungent cultivar of red pepper, CH-19 sweet. To elucidate the mechanisms underlying the non-pungency of capsiate, we investigated whether capsiate activates the cloned capsaicin receptor, TRPV1 (VR1). In patch-clamp experiments, capsiate was found to activate TRPV1 expressed transiently in HEK293 cells with a similar potency as capsaicin. Capsiate induced nociceptive responses in mice when injected subcutaneously into their hindpaws with a similar dose dependency as capsaicin. These data indicate that the non-pungent capsiate is an agonist for TRPV1 and could excite peripheral nociceptors. In contrast to this, capsiate did not induce any significant responses when applied to the skin surface, eye or oral cavity of mice, suggesting that capsiate requires direct access to nerve endings to exhibit its effects. Capsiate was proved to have high lipophilicity and to be easily broken down in normal aqueous conditions, leading to less accessibility to nociceptors. Another highly lipophilic capsaicin analogue, olvanil, was similar to capsiate in that it did not produce irritant responses when applied to the skin surface, although it could activate TRPV1. Taken together, high lipophilicity and instability might be critical determinants for pungency and so help in understanding the effects of capsaicin-related compounds.
ISSN:0028-3908
1873-7064
DOI:10.1016/S0028-3908(03)00100-X