Loading…
Theoretical model for the transverse interference pattern of GRIN optical fiber using a laser sheet of light
A new technique (El-Ghandoor et al., Opt. Laser Technol. 31(7) (1999) 481–488) has been applied to study the shape of transverse interference fringes, instead of multiple beam Fizeau fringes (Marhic, Stein, Appl. Phys. Lett. 35 (1975) 1678–1682), from a GRIN optical fiber. In this technique, a laser...
Saved in:
Published in: | Optics and laser technology 2000-06, Vol.32 (4), p.281-286 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new technique (El-Ghandoor et al., Opt. Laser Technol. 31(7) (1999) 481–488) has been applied to study the shape of transverse interference fringes, instead of multiple beam Fizeau fringes (Marhic, Stein, Appl. Phys. Lett. 35 (1975) 1678–1682), from a GRIN optical fiber. In this technique, a laser light sheet is used to illuminate and pass directly through the optical fiber. Theoretical expressions are derived for the optical path differences of three groups of interference beams. The first one passes through the cladding, the core, and then the cladding once again; the second passes through the cladding only, and the third passes through the surrounding air. Theoretical expressions for the shape of transverse interference fringes formed across isotropic non-absorbing optical fibers are also calculated. |
---|---|
ISSN: | 0030-3992 1879-2545 |
DOI: | 10.1016/S0030-3992(00)00068-2 |