Loading…
InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts
The optical and electrical properties of indium tin oxide (ITO)(60 nm), Ni(3.5 nm)/ITO(60 nm) and Ni(5 nm)/Au(5 nm) films were studied. It was found that the normalized transmittance of ITO and Ni/ITO films could reach 98.2% and 86.6% at 470 nm, which was much larger than that of the Ni/Au film. It...
Saved in:
Published in: | Solid-state electronics 2003-05, Vol.47 (5), p.849-853 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical and electrical properties of indium tin oxide (ITO)(60 nm), Ni(3.5 nm)/ITO(60 nm) and Ni(5 nm)/Au(5 nm) films were studied. It was found that the normalized transmittance of ITO and Ni/ITO films could reach 98.2% and 86.6% at 470 nm, which was much larger than that of the Ni/Au film. It was also found that both Ni/ITO and Ni/Au could form good ohmic contact on top of p-GaN. In contrast, ITO on p-GaN was electrically poor and non-ohmic. Nitride-based light-emitting diodes (LEDs) with these three p-contact layers were also fabricated. It was found that the LED forward voltage was 3.65, 3.26 and 3.24 V for the LEDs with ITO, Ni/ITO and Ni/Au p-contact layer, respectively. With a 20 mA current injection, it was also found that measured output power was 7.50, 6.59 and 5.26 mW for the LEDs with ITO, Ni/ITO and Ni/Au p-contact layer, respectively. Although the LED with ITO p-contact could provide the largest output intensity, its lifetime was the shortest due to severe heating effect. |
---|---|
ISSN: | 0038-1101 1879-2405 |
DOI: | 10.1016/S0038-1101(02)00440-9 |