Loading…

Dissociative adsorption of hydrogen on strained Cu surfaces

The adsorption and dissociation of hydrogen on strained clean and oxygen-covered Cu surfaces have been studied by calculations based on density functional theory within the generalized gradient approximation. On all surfaces we find an upshift of the surface d-band center upon lattice expansion. Sti...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2003-02, Vol.525 (1), p.107-118
Main Authors: Sakong, Sung, Groß, Axel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adsorption and dissociation of hydrogen on strained clean and oxygen-covered Cu surfaces have been studied by calculations based on density functional theory within the generalized gradient approximation. On all surfaces we find an upshift of the surface d-band center upon lattice expansion. Still there is no general trend in the hydrogen adsorption energies at the high-symmetry sites and the dissociation barrier heights as a function of lattice strain for the low-index Cu surfaces in contrast to the predictions of the d-band model. It turns out that the adsorbate-induced change of the Cu local d-band density of states has to be taken into account in order to rationalize these results. As far as the oxygen-precovered Cu(1 0 0) surface is concerned, the strain-induced change in the hydrogen adsorption energies and dissociation barriers can simply be related to the increased hydrogen–oxygen distance upon lattice expansion.
ISSN:0039-6028
1879-2758
DOI:10.1016/S0039-6028(02)02550-5