Loading…

The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition

Multi-wall carbon nanotubes were synthesized on electroplated palladium nanoclusters using a microwave plasma-enhanced chemical vapor deposition system in a mixture of methane and hydrogen as precursors. During the synthesis, Pd was melted to fill up the growing multi-wall carbon nanotubes. A growth...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2003, Vol.423 (1), p.27-32
Main Authors: Chan, L.H, Hong, K.H, Lai, S.H, Liu, X.W, Shih, H.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-wall carbon nanotubes were synthesized on electroplated palladium nanoclusters using a microwave plasma-enhanced chemical vapor deposition system in a mixture of methane and hydrogen as precursors. During the synthesis, Pd was melted to fill up the growing multi-wall carbon nanotubes. A growth mechanism was proposed to describe the Pd filling phenomenon. The multi-wall carbon nanotubes could be burned in oxygen plasma and the filled Pd nanowires could thus be collected. The surface morphology of electroplated Pd clusters and the nanostructure of multi-wall carbon nanotubes with filled Pd nanowires were examined by scanning electron microscopy and transmission electron microscopy, respectively. Raman spectra were used to study the first- and second-order signals of multi-wall carbon nanotubes. Bamboo-shaped carbon nanotubes free of filled Pd were observed under a pure methane atmosphere.
ISSN:0040-6090
1879-2731
DOI:10.1016/S0040-6090(02)00966-5