Loading…

A multi-objective optimum design of general 3R manipulators for prescribed workspace limits

Manipulator design can be conveniently expressed as a function of workspace requirements, since a fundamental feature of manipulators is recognized in workspace capabilities. In this paper a suitable formulation for the workspace has been used for the manipulator design, which has been formulated as...

Full description

Saved in:
Bibliographic Details
Published in:Mechanism and machine theory 2004-02, Vol.39 (2), p.119-132
Main Authors: Ceccarelli, Marco, Lanni, Chiara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Manipulator design can be conveniently expressed as a function of workspace requirements, since a fundamental feature of manipulators is recognized in workspace capabilities. In this paper a suitable formulation for the workspace has been used for the manipulator design, which has been formulated as multi-objective optimization problem by using the workspace volume and robot dimensions as objective functions, and given workspace limits as constraints. Additional constraints have been included to obtain manipulator sizes within practical values. The optimum design has been successfully tested by numerical examples, which have also proved the efficiency of using an algebraic formulation for the workspace of 3R manipulators.
ISSN:0094-114X
1873-3999
DOI:10.1016/S0094-114X(03)00109-5