Loading…

Optical 3-D dynamic measurement system and its application to polymer membrane inflation tests

An optical surface measurement system, which is capable of measuring transient surface shape, has been developed by using a high-speed digital camera. The system is based on the grating projection and Fourier transform technique. A calibration procedure is developed to allow the system to generate C...

Full description

Saved in:
Bibliographic Details
Published in:Optics and lasers in engineering 2000-04, Vol.33 (4), p.261-276
Main Authors: Li, Yong, Nemes, James A, Derdouri, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An optical surface measurement system, which is capable of measuring transient surface shape, has been developed by using a high-speed digital camera. The system is based on the grating projection and Fourier transform technique. A calibration procedure is developed to allow the system to generate Cartesian coordinates directly, which are with respect to a fixed coordinate system in 3-D space. The measurement accuracy (±50 μm) is defined and verified as the maximum error between measured values and the known values of standard objects both flat and curved. The camera and a grating projector are mounted into a portable sensor head to allow in situ measurements. In addition, external force or pressure signals can be correlated with each measurement through a device called the multi-channel data link. The system is capable of digitizing a 3-D curved surface into an array of points with known xyz coordinates at a sampling rate from 30 to 1000 Hz. As an application, the system is used to measure the transient surface shape during a polymer membrane inflation test. The measurement results along with the pressure information provide an approach to determine the material parameters used in different material models.
ISSN:0143-8166
1873-0302
DOI:10.1016/S0143-8166(00)00047-6