Loading…
Effect of High Dietary Manganese Intake of Neonatal Rats on Tissue Mineral Accumulation, Striatal Dopamine Levels, and Neurodevelopmental Status
Mn is an essential element, but may become neurotoxic at high levels. Recent reports of high Mn levels in hair of children with neurodevelopmental deficits suggest that these deficits could be due to Mn-induced neurotoxic effects on brain dopamine (DA) systems, although the mechanism is not well und...
Saved in:
Published in: | Neurotoxicology (Park Forest South) 2002-10, Vol.23 (4), p.635-643 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mn is an essential element, but may become neurotoxic at high levels. Recent reports of high Mn levels in hair of children with neurodevelopmental deficits suggest that these deficits could be due to Mn-induced neurotoxic effects on brain dopamine (DA) systems, although the mechanism is not well understood. Infant formulas contain considerably higher concentrations of Mn than human milk. Thus, formula-fed infants are exposed to high levels of Mn at a time when Mn homeostasis is incompletely developed. We studied the effects of dietary Mn supplementation of rat pups on tissue Mn accumulation, brain dopamine levels, infant neurodevelopmental status, and behavior at maturity. Newborn rats were supplemented daily with 0, 50, 250, or 500
μg Mn given orally from day 1 to day 20. Mineral analysis of small intestine and brain at day 14 showed a significant increase of tissue Mn in supplemented rats. Neurodevelopmental tests conducted at various ages showed significant delays as a function of Mn supplementation. At day 32, there was a significant positive relationship between passive avoidance errors and Mn supplementation levels. Brains of animals killed on day 40 showed a significant inverse relationship between Mn supplementation level and striatal dopamine concentration. These observations suggest that dietary exposure to high levels of Mn during infancy can be neurotoxic to rat pups and result in developmental deficits. |
---|---|
ISSN: | 0161-813X 1872-9711 |
DOI: | 10.1016/S0161-813X(02)00091-8 |