Loading…
Which spaces have a coarser connected Hausdorff topology?
We present some answers to the title. For example, if K is compact, zero-dimensional and D is discrete, then K⊕D has a coarser connected topology iff w(K)⩽2|D|. Similar theorems hold for ordinal spaces and spaces K⊕D where K is compact, not necessarily zero-dimensional. Every infinite cardinal has a...
Saved in:
Published in: | Topology and its applications 2002-11, Vol.125 (2), p.215-231 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present some answers to the title. For example, if K is compact, zero-dimensional and D is discrete, then K⊕D has a coarser connected topology iff w(K)⩽2|D|. Similar theorems hold for ordinal spaces and spaces K⊕D where K is compact, not necessarily zero-dimensional. Every infinite cardinal has a coarser connected Hausdorff topology; so do Kunen lines, Ostaszewski spaces, and Ψ-spaces; but spaces X with X⊂βω and |βω⧹X| |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/S0166-8641(01)00274-7 |