Loading…

Structure–activity studies with ring E analogues of methyllycaconitine on bovine adrenal α3β4 nicotinic receptors

The development of new agents that selectively interact with subtypes of neuronal nicotinic receptors (nAChRs) is of primary importance for the study of physiological processes and pathophysiological conditions involving these receptors. Our laboratory has evidence that simple ring E analogues of me...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience research 2002, Vol.42 (1), p.57-63
Main Authors: Bryant, Darrell L, Free, R.Benjamin, Thomasy, Sara M, Lapinsky, David J, Ismail, Khadiga A, McKay, Susan B, Bergmeier, Stephen C, McKay, Dennis B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of new agents that selectively interact with subtypes of neuronal nicotinic receptors (nAChRs) is of primary importance for the study of physiological processes and pathophysiological conditions involving these receptors. Our laboratory has evidence that simple ring E analogues of methyllycaconitine (MLA) act as antagonists to bovine adrenal α3β4* nAChRs. The following studies were designed to characterize the concentration–response effects of several ring E analogues of MLA in order to assess structural requirements involved with their inhibitory activity on bovine adrenal α3β4* nAChRs. Ring E analogues with various substitutions on the ring E nitrogen were tested for their ability to inhibit nicotinic stimulated adrenal catecholamine release and [ 3H]epibatidine binding to a bovine adrenal membrane preparation. Several N-alkyl derivatives inhibited secretion with IC 50 values in the low micromolar range. The N-phenpropyl analogue was the most potent of the analogues tested (IC 50, 11 μM) on adrenal secretion. Competition binding studies suggest a noncompetitive interaction of the analogues with bovine adrenal nAChRs. These studies identify several structural features of ring E analogues of MLA which significantly affect their inhibitory activity on bovine adrenal α3β4* nAChRs.
ISSN:0168-0102
1872-8111
DOI:10.1016/S0168-0102(01)00304-2