Loading…

Use of the nuclear microprobe at the University of Arizona for the study of heavy metal deposition in rabbit renal tissue

Industrial wastes consigned to disposal sites frequently contain substantial amounts of heavy metals. We have successfully applied proton induced X-ray emission analysis (PIXE) in the conduct of heavy metal (Hg, Cd, Cr, As) toxicity studies using precision cut rabbit renal cortical slices. The large...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 1997-07, Vol.130 (1), p.358-361
Main Authors: Keith, R.L., Gandolfi, A.J., McIntyre, L.C., Ashbaugh, M.D., Fernando, Q.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial wastes consigned to disposal sites frequently contain substantial amounts of heavy metals. We have successfully applied proton induced X-ray emission analysis (PIXE) in the conduct of heavy metal (Hg, Cd, Cr, As) toxicity studies using precision cut rabbit renal cortical slices. The large beam diameter (4000 μm) of the proton macroprobe at The University of Arizona Ion Beam Analysis facility allowed an overall concentration of the metal(s) of interest in the samples to be determined, but lacked the ability to resolve point concentrations in the tissue. The ability to locate these areas has now been made available to us with the addition of a rastering microprobe (μ-PIXE) to the facility. Studies now being conducted in our laboratory using this micro-technique include analysis of renal tissue taken from rabbits injected intraperitoneally with HgCl 2, K 2Cr 2O 7, and NaAsO 2. The small beam size (3 μm) and the ability to raster this beam over areas of up to 125 μm × 125 μm has allowed regional mapping of endogenous and non-endogenous metal concentrations and revealed trends in heavy metal deposition in in vivo treated renal tissue, significantly increasing the amount of information obtained from these animal studies using PIXE alone. The combination of small beam size, high resolution, and multi-element detection makes μ-PIXE a powerful tool for investigating the impact of non-endogenous metals on the kidney.
ISSN:0168-583X
1872-9584
DOI:10.1016/S0168-583X(97)00226-7