Loading…

High resolution imaging of contact potential difference using a novel ultrahigh vacuum non-contact atomic force microscope technique

An ultrahigh vacuum scanning Kelvin probe force microscope (UHV SKPM) based on the gradient of electrostatic force was developed using the technique of a UHV non-contact atomic force microscope (NC-AFM) capable of atomic level imaging, and used for simultaneous observation of contact potential diffe...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 1999-02, Vol.140 (3), p.265-270
Main Authors: Kitamura, Shinichi, Suzuki, Katsuyuki, Iwatsuki, Masashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ultrahigh vacuum scanning Kelvin probe force microscope (UHV SKPM) based on the gradient of electrostatic force was developed using the technique of a UHV non-contact atomic force microscope (NC-AFM) capable of atomic level imaging, and used for simultaneous observation of contact potential difference (CPD) and NC-AFM images. The CPD images with a potential resolution of less than 10 meV were observed in the UHV SKPM, demonstrating an atomic level resolution. The change of potential corresponding to the charges on the insulated surface of polypropylene have been observed in UHV SKPM. We also demonstrated a reliable method to obtain the CPD from the bias voltage dependence curves of the frequency shift in all of the scanning area. The results are consistent with comparing the barrier height images in that the work functions of adatoms are greater than the work function of corner holes.
ISSN:0169-4332
1873-5584
DOI:10.1016/S0169-4332(98)00538-8