Loading…
The chemical weathering regime of Kärkevagge, arctic–alpine Sweden
Kärkevagge is a valley located in Swedish Lapland at approximately 68°N and represents an arctic–alpine landscape. It is a presently periglacial, glaciated trough incised into essentially horizontal metamorphic rocks, some of which are presumably pyrite-rich. A set of coordinated studies was underta...
Saved in:
Published in: | Geomorphology (Amsterdam, Netherlands) Netherlands), 2001-11, Vol.41 (1), p.37-52 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Kärkevagge is a valley located in Swedish Lapland at approximately 68°N and represents an arctic–alpine landscape. It is a presently periglacial, glaciated trough incised into essentially horizontal metamorphic rocks, some of which are presumably pyrite-rich. A set of coordinated studies was undertaken to investigate the nature of chemical weathering and pedogenesis in the valley and upon the abutting ridges. August 1996 water quality measures reveal considerable spatial variation in solute totals with the highest Total Dissolved Solute abundances being correlated with high sulfate abundances. Ridge-crest soils exhibited poor horizonation, but more extensive development of secondary clay minerals developed in situ than was found in valley-flank and valley-bottom soils. Valley soils exhibited multiple thin horizons, many of which were buried, and are taken to reflect great paraglacial and periglacial instability. Favorable microenvironments in the valley permit significant development of Spodosols. Coarse debris along and across the valley bears both weathering rinds and rock coatings. Rock coatings in the valley include several types of iron films, sulfate crusts, carbonate skins, and heavy metal skins. Kärkevagge represents a mild arctic environment, which does not preclude substantial chemical weathering in locations where abundant pyrite-rich bedrock and water coincide. This weathering follows pathways which are eminently expectable given that weathering of the pyrite-rich rock permits generation of sulfuric acid which, in turn, weathers muscovite mica and calcite in local schists and marble, respectively. Zones of intense chemical weathering also generate clearly visible deposits of gypsum and iron sulfate deposits such as jarosite. Not all arctic and/or alpine environments are likely to be so active chemically, but the results from Kärkevagge clearly show that dismissal of chemical weathering in cold regions on the basis of presumed first principles is erroneous. Consequently, chemical weathering in such environments merits substantially more attention than it has hitherto received. |
---|---|
ISSN: | 0169-555X 1872-695X |
DOI: | 10.1016/S0169-555X(01)00102-7 |