Loading…
Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation
A design procedure and thermal performance analysis of a two stage solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The concentrator is comprised of a primary one axis parabolic trough concentrator and a second stage compound parabolic concentrator...
Saved in:
Published in: | Energy conversion and management 2000-05, Vol.41 (7), p.737-756 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A design procedure and thermal performance analysis of a two stage solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The concentrator is comprised of a primary one axis parabolic trough concentrator and a second stage compound parabolic concentrator mounted at the focus of the primary. The thermoelectric device is attached to the absorber plate at the focus of the secondary. A cooling tube is fitted to the cold side of the thermoelectric device to extract the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency. The key requirements of the concentrator design are to be tolerant of tracking misalignment, maintain temperature gradients to suit thermoelectric generation and minimise heat losses. A design methodology is presented which allows interception of rays within an angular region
±δ
. This results in a wider receiver for the parabolic trough concentrator than would usually be used for a similar concentration ratio. The role of the second stage concentrator in limiting heat losses from the absorber plate is evaluated. Results indicate that in addition to improving the concentration efficiency, the second stage compound parabolic concentrator of the proposed design also inhibits convective air movement and, consequently, improves the overall performance of the solar concentrator. |
---|---|
ISSN: | 0196-8904 1879-2227 |
DOI: | 10.1016/S0196-8904(99)00134-X |