Loading…

Hand gesture recognition using a real-time tracking method and hidden Markov models

In this paper, we introduce a hand gesture recognition system to recognize continuous gesture before stationary background. The system consists of four modules: a real time hand tracking and extraction, feature extraction, hidden Markov model (HMM) training, and gesture recognition. First, we apply...

Full description

Saved in:
Bibliographic Details
Published in:Image and vision computing 2003-08, Vol.21 (8), p.745-758
Main Authors: Chen, Feng-Sheng, Fu, Chih-Ming, Huang, Chung-Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we introduce a hand gesture recognition system to recognize continuous gesture before stationary background. The system consists of four modules: a real time hand tracking and extraction, feature extraction, hidden Markov model (HMM) training, and gesture recognition. First, we apply a real-time hand tracking and extraction algorithm to trace the moving hand and extract the hand region, then we use the Fourier descriptor (FD) to characterize spatial features and the motion analysis to characterize the temporal features. We combine the spatial and temporal features of the input image sequence as our feature vector. After having extracted the feature vectors, we apply HMMs to recognize the input gesture. The gesture to be recognized is separately scored against different HMMs. The model with the highest score indicates the corresponding gesture. In the experiments, we have tested our system to recognize 20 different gestures, and the recognizing rate is above 90%.
ISSN:0262-8856
1872-8138
DOI:10.1016/S0262-8856(03)00070-2