Loading…
Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): onset of Rodinia rifting at the western edge of the Congo craton
New ion microprobe U–Pb zircon ages, as well as some geochemical and isotopic analyses, for key igneous units within the central part of the West Congo belt are integrated with geological information to provide an updated geological map (1:1 000 000 scale) and a synthetic type cross-section of the b...
Saved in:
Published in: | Precambrian research 2001-08, Vol.110 (1), p.277-306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New ion microprobe U–Pb zircon ages, as well as some geochemical and isotopic analyses, for key igneous units within the central part of the West Congo belt are integrated with geological information to provide an updated geological map (1:1 000 000 scale) and a synthetic type cross-section of the belt, as well as an updated lithostratigraphic chart of the ‘West Congo Supergroup’. Three Neoproterozoic units are recognised, from oldest to youngest, the Zadinian, Mayumbian and West Congolian ‘Groups’. Emplacement of early Zadinian peralkaline granites (Noqui massif, 999±7 Ma) and rhyolites (Palabala) was accompanied by incipient rift sedimentation, corresponding to the onset of transtensional rifting, preferentially in a transverse mega-shear setting along the margin of the Congo craton. Subsequent upper Zadinian magmatism produced a thick (1600–2400 m) basaltic sequence (Gangila), which has geochemical characteristics typical of continental flood basalts (CFBs). The Gangila basalts, associated with major pull-apart rifting, were followed rapidly by the 3000–4000 m thick Mayumbian rhyolitic lavas, dated at 920±8 Ma at the base and 912±7 Ma at the top. The felsic lavas are intruded by coeval high-level (micro)granites, whose emplacement is dated at 924±25 Ma (Mativa body) and at 917±14 Ma (Bata Kimenga body) in the Lufu massif. This voluminous bimodal magmatic province is similar to the Paraná and Deccan provinces, and shares similar lithospheric sources. It corresponds to the initial, transtensional rifting stage along the western edge of the Congo craton before Rodinia breakup. The early Neoproterozoic rocks of the West Congo Supergroup rest unconformably on a ca. 2.1 Ga Palaeoproterozoic polycyclic basement (Kimezian Supergroup). No Mesoproterozoic events are recorded in the area. Following the initial, transtensional early Neoproterozoic (ca. 1000–910 Ma) rifting stage, Bas-Congo behaved as a passive margin of the Congo craton, as indicated by deposition of ca. 4000 m of Neoproterozoic (pre-Pan-African) platform sediments (lower part of West Congolian Group) preceding ca. 2000 m of Pan-African molasse-type sediments (upper part of West Congolian Group). In the late Neoproterozoic, during Pan-African assembly of Gondwanaland, the Bas-Congo passive margin, which was largely protected by thick lithosphere of the Congo craton, collided with a western active margin to form the Brasiliano-Araçuaı́ belt, now preserved adjacent to the São Francisco craton of Braz |
---|---|
ISSN: | 0301-9268 1872-7433 |
DOI: | 10.1016/S0301-9268(01)00192-9 |