Loading…

Sources of Svecofennian granitoids in the light of ion probe UPb measurements on their zircons

The presence of 1.91–1.93 Ga old granitoids at the Archean–Proterozoic boundary along the Raahe–Ladoga zone in Finland has been demonstrated on various occasions. These rocks have been considered to represent juvenile crustal material, as their ε Nd values are markedly positive. However, as Svecofen...

Full description

Saved in:
Bibliographic Details
Published in:Precambrian research 2003-03, Vol.121 (3), p.251-262
Main Authors: Vaasjoki, Matti, Huhma, Hannu, Lahtinen, Raimo, Vestin, Jessica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of 1.91–1.93 Ga old granitoids at the Archean–Proterozoic boundary along the Raahe–Ladoga zone in Finland has been demonstrated on various occasions. These rocks have been considered to represent juvenile crustal material, as their ε Nd values are markedly positive. However, as Svecofennian metasediments contain detrital zircons derived from a ca. 2 Ga old source, the possibility has existed that the 1.92 Ga age may have been a mixture between 2 and 1.89 Ga old zircon populations, as such mixing would not markedly affect their neodymium isotopic properties. Also, some syntectonic 1.89 Ga old Svecofennian granitoids contain heterogeneous zircon populations, but it has been impossible to determine the age and origin of the older zircons by conventional methods. NORDSIM ion probe results on three samples from the 1.92 Ga age group confirm the earlier conclusions. Especially important is that no zircons older than 1.95 Ga were detected in the 1.92 Ga group samples. Thus, the 1.92 Ga event was the beginning of the formation of new continental crust in the primitive Svecofennian island arc and these granitoids formed by partial melting of basaltic magmas derived from a depleted mantle source. One sample also contains a younger zircon population formed during the orogenic culmination at 1.89 Ga. In contrast, one grain from a sample representing the 1.89 Ga age group contains an Archean core, which is considered to represent sedimentary detritus assimilated during either magma formation or intrusion. While the results prove the true igneous nature of the 1.92 Ga event, they also rule out these rocks as a possible provenance for the ca. 2 Ga old zircons encountered in the Svecofennian metaturbidites. Thus, there is still no direct evidence from granitoid rocks for an extensive Svecofennian protocrust, the existence of which has been postulated on the basis of geochemical and SmNd isotopic data.
ISSN:0301-9268
1872-7433
DOI:10.1016/S0301-9268(03)00015-9