Loading…

Two-phase flow patterns in parallel micro-channels

Micro-channel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro-electronic devices. Some of the important aspects associated with two-phase flows in micro-channels, is to study the bubble behavior and flow regimes in diabatic, parallel micro-channels...

Full description

Saved in:
Bibliographic Details
Published in:International journal of multiphase flow 2003-03, Vol.29 (3), p.341-360
Main Authors: Hetsroni, G., Mosyak, A., Segal, Z., Pogrebnyak, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Micro-channel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro-electronic devices. Some of the important aspects associated with two-phase flows in micro-channels, is to study the bubble behavior and flow regimes in diabatic, parallel micro-channels. Most of the reports in the literature present data of only a single channel and mostly adiabatic. This does not account for flow mixing and hydrodynamic instability that occurs in parallel micro-channels, connected by common inlet and outlet collectors. In the present study, experiments were performed for air–water and steam–water flow in parallel triangular micro-channels. The experimental study is based on systematic measurements of temperature and flow pattern by infrared radiometry and high-speed digital video imaging. In air–water flow different flow patterns were observed simultaneously in the various micro-channels at a fixed values of water and gas flow rates. In steam–water flow, instability in uniformly heated micro-channels was observed. This work develops a practical modeling approach for two-phase micro-channel heat sinks and considers the discrepancy between flow patterns of air–water and steam–water flow in parallel micro-channels.
ISSN:0301-9322
1879-3533
DOI:10.1016/S0301-9322(03)00002-8