Loading…

The permeation of binary gas mixtures through support structures of composite membranes

The dusty gas model (DGM) is used to describe transport of binary gas mixtures through porous membrane supports to quantify the resistance towards permeation. The model equations account for three different transport mechanisms for the permeating components: conventional viscous pore flow, Knudsen d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science 1998-11, Vol.150 (1), p.57-73
Main Authors: Beuscher, Uwe, H. Gooding, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dusty gas model (DGM) is used to describe transport of binary gas mixtures through porous membrane supports to quantify the resistance towards permeation. The model equations account for three different transport mechanisms for the permeating components: conventional viscous pore flow, Knudsen diffusion, and binary diffusion. Experimental data obtained with the uncoated membrane supports are used to determine the morphological parameters needed in the DGM equations. Flat sheet and hollow fiber membrane supports are characterized by the permeation of a TCE/nitrogen vapor. The DGM shows an excellent fit to experimental data when the asymmetric structure of the membrane supports is taken into account, but the morphological parameters cannot necessarily be related to precise physical structure parameters such as pore size, porosity, and tortuosity. The DGM works well even when the membrane supports are modeled as a single homogenous structure. The membrane supports exhibit different resistances towards the various transport mechanisms that occur within the porous support and the resistances vary with process conditions so that support optimization is not straightforward. With the analysis presented in this paper and transport equations specific to the dense coating and module geometries, the influence of the support layer on gas or vapor separation can be quantified.
ISSN:0376-7388
1873-3123
DOI:10.1016/S0376-7388(98)00204-X