Loading…
Phenocryst fragments in rhyolitic lavas and lava domes
Although rhyolitic lavas and lava domes are characterised by evenly porphyritic textures, not all the phenocrysts are whole euhedra. We undertook image analysis of 46 rhyolitic lava and lava dome samples to determine the abundance and shape of quartz and feldspar phenocryst fragments. Phenocryst fra...
Saved in:
Published in: | Journal of volcanology and geothermal research 2003-08, Vol.126 (3), p.263-283 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although rhyolitic lavas and lava domes are characterised by evenly porphyritic textures, not all the phenocrysts are whole euhedra. We undertook image analysis of 46 rhyolitic lava and lava dome samples to determine the abundance and shape of quartz and feldspar phenocryst fragments. Phenocryst fragments were identified in nearly all samples. On average, fragments amount to ∼5% of the total phenocryst population, or ∼0.5 modal%. The abundance of fragments in lavas and lava domes is not related to the groundmass texture (whether vesicular, flow banded, massive, glassy or crystalline), nor to distance from source. Fragments are, however, more abundant in samples with higher phenocryst contents. The phenocryst fragments in rhyolitic lavas and lava domes are mainly medium to large (0.5–3.5 mm), almost euhedral crystals with only a small portion removed, or chunky, equant, subhedral fragments, and occur in near-jigsaw-fit or clast-rotated pairs or groups. The fragments probably formed in response to decompression of large melt inclusions. Shear during laminar flow then dismembered the phenocrysts; continued laminar shear separated and rotated the fragments. Fractures probably formed preferentially along weaknesses in the phenocrysts, such as zones of melt inclusions, cleavage planes and twin composition planes. Rare splintery fragments are also present, especially within devitrified domains. Splinters are attributed to comminution of solid lava adjacent to fractures that were later healed. For comparison, we measured crystal abundance in a further 12 rhyolite samples that include block and ash flow deposits and ignimbrite. Phenocryst fragments within clasts in the block and ash flow samples showed similar shapes and abundances to those fragments within the lava and lava domes. Crystal fragments are much more abundant in ignimbrite (exceeding 67% of the crystal population) however, and dominated by small, equant, anhedral chunks or splinters. The larger crystals in the ignimbrite are subrounded. The phenocrysts within ignimbrite pumice lapilli are also more intensely fractured than those in lavas and lava domes. Thus, in deformed and altered volcanic successions, data on crystal fragment abundance and shape can help discriminate lavas from pyroclastic facies. |
---|---|
ISSN: | 0377-0273 1872-6097 |
DOI: | 10.1016/S0377-0273(03)00151-3 |