Loading…
Treatment of chlorinated organic contaminants with nanoscale bimetallic particles
Nanoscale bimetallic particles (Pd/Fe, Pd/Zn, Pt/Fe, Ni/Fe) have been synthesized in the laboratory for treatment of chlorinated organic pollutants. Specific surface areas of the nanoscale particles are tens of times larger than those of commercially available microscale metal particles. Rapid and c...
Saved in:
Published in: | Catalysis today 1998-05, Vol.40 (4), p.387-395 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoscale bimetallic particles (Pd/Fe, Pd/Zn, Pt/Fe, Ni/Fe) have been synthesized in the laboratory for treatment of chlorinated organic pollutants. Specific surface areas of the nanoscale particles are tens of times larger than those of commercially available microscale metal particles. Rapid and complete dechlorination of several chlorinated organic solvents and chlorinated aromatic compounds was achieved by using the nanoscale bimetallic particles. Evidence observed suggests that within the bimetallic complex, one metal (Fe, Zn) serves primarily as electron donor while the other as catalyst (Pd, Pt). Surface-area-normalized reactivity constants are about 100 times higher than those of microscale iron particles. Production of chlorinated byproducts, frequently reported in studies with iron particles, is notably reduced due to the presence of catalyst. The nano-particle technology offers great opportunities for both fundamental research and technological applications in environmental engineering and science. |
---|---|
ISSN: | 0920-5861 1873-4308 |
DOI: | 10.1016/S0920-5861(98)00067-4 |