Loading…
Novel array-type gas sensors using conducting polymers, and their performance for gas identification
Novel gas sensor devices have been developed using polythiophene (pTh) film and poly(3-n-dodecylthiophene) (pDpTh) film coated over pTh film. These polymer films were electrochemically deposited and doped by cyclic voltammetry on thin-film electrodes where the isolation gap was formed by a micromach...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2002-03, Vol.83 (1-3), p.270-275 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel gas sensor devices have been developed using polythiophene (pTh) film and poly(3-n-dodecylthiophene) (pDpTh) film coated over pTh film. These polymer films were electrochemically deposited and doped by cyclic voltammetry on thin-film electrodes where the isolation gap was formed by a micromachining process. We examined the response characteristics of the conducting polymer films against various sample gases over a range of temperatures of the sensitive layer. The resistance changes of both sensitive layers of pTh and pDpTh were highly dependent on the kind of layer. In particular, pTh film responded to ammonia gas and pDpTh films clearly responded to hydrophobic gases, such as chloroform, methane and ethanol. The response of these films to several gases was analyzed with a pattern recognition (PARC) algorithm. It was found that our simple gas sensor device could discriminate between the gases that were used here. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/S0925-4005(01)01069-3 |