Loading…
The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds
The solubility properties of a series of nitroaromatic compounds have been determined and utilized with known linear solvation energy relationships to calculate their sorption properties in a series of chemoselective polymers. These measurements and results were used to design a series of novel chem...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2000-06, Vol.65 (1), p.5-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The solubility properties of a series of nitroaromatic compounds have been determined and utilized with known linear solvation energy relationships to calculate their sorption properties in a series of chemoselective polymers. These measurements and results were used to design a series of novel chemoselective polymers to target polynitroaromatic compounds. The polymers have been evaluated as thin sorbent coatings on surface acoustic wave (SAW) devices for their vapor sorption and selectivity properties. The most promising materials tested, include siloxane polymers functionalized with acidic pendant groups that are complimentary in their solubility properties for nitroaromatic compounds. The most sensitive of the new polymers exhibit SAW sensor detection limits for nitrobenzene (NB) and 2,4-dinitrotoluene in the low parts per billion (ppb) and low parts per trillion (ppt) concentration range, respectively. Polymers with favorable physicochemical properties exhibit low water vapor sorption, and rapid signal kinetics for NB, reaching 90% of signal response in 4 s. Studies with an in situ infrared spectroscopy technique are used to determine the mechanism of interaction between nitroaromatic compounds and the chemoselective polymer. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/S0925-4005(99)00351-2 |