Loading…

The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds

The solubility properties of a series of nitroaromatic compounds have been determined and utilized with known linear solvation energy relationships to calculate their sorption properties in a series of chemoselective polymers. These measurements and results were used to design a series of novel chem...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2000-06, Vol.65 (1), p.5-9
Main Authors: McGill, R.Andrew, Mlsna, Todd E, Chung, Russell, Nguyen, Viet K, Stepnowski, Jennifer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The solubility properties of a series of nitroaromatic compounds have been determined and utilized with known linear solvation energy relationships to calculate their sorption properties in a series of chemoselective polymers. These measurements and results were used to design a series of novel chemoselective polymers to target polynitroaromatic compounds. The polymers have been evaluated as thin sorbent coatings on surface acoustic wave (SAW) devices for their vapor sorption and selectivity properties. The most promising materials tested, include siloxane polymers functionalized with acidic pendant groups that are complimentary in their solubility properties for nitroaromatic compounds. The most sensitive of the new polymers exhibit SAW sensor detection limits for nitrobenzene (NB) and 2,4-dinitrotoluene in the low parts per billion (ppb) and low parts per trillion (ppt) concentration range, respectively. Polymers with favorable physicochemical properties exhibit low water vapor sorption, and rapid signal kinetics for NB, reaching 90% of signal response in 4 s. Studies with an in situ infrared spectroscopy technique are used to determine the mechanism of interaction between nitroaromatic compounds and the chemoselective polymer.
ISSN:0925-4005
1873-3077
DOI:10.1016/S0925-4005(99)00351-2