Loading…

Essential genes for myoblast fusion in Drosophila embryogenesis

In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is...

Full description

Saved in:
Bibliographic Details
Published in:Mechanisms of Development 1999-05, Vol.83 (1), p.17-26
Main Authors: Paululat, Achim, Holz, Anne, Renkawitz-Pohl, Renate
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. Molecular analysis of two of these genes revealed the importance of cytoplasmic components. One of these, Myoblast city, is expressed in several tissues and is homologous to the mammalian protein DOCK180. Myoblast city is presumably involved in cell recognition and cell adhesion. Blown fuse, the second cytoplasmic component, is selectively expressed in the mesoderm and essential in order to proceed from the prefusion complex to electron-dense plaques at opposed membranes between adjacent myoblasts. The rolling stone gene is transiently expressed during myoblast fusion. The Rost protein is located in the membrane and thus might be a key component for cell recognition. The molecular characterization of further genes relevant for fusion such as singles bar and sticks and stones will help to elucidate the mechanism of myoblast fusion in Drosophila.
ISSN:0925-4773
1872-6356
DOI:10.1016/S0925-4773(99)00029-5