Loading…

An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts

Spectra of the adsorbed species arising from contact of a V2O5-MoO3-TiO2 model SCR catalyst with ortho-dichlorobenzene (o-DCB) and dibenzofuran (DBF) and their evolution with the temperature are presented and discussed. Dichlorobenzene adsorbs weakly probably on Lewis acid sites through the chlorine...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2002-12, Vol.39 (4), p.343-352
Main Authors: Larrubia, M.Angeles, Busca, Guido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spectra of the adsorbed species arising from contact of a V2O5-MoO3-TiO2 model SCR catalyst with ortho-dichlorobenzene (o-DCB) and dibenzofuran (DBF) and their evolution with the temperature are presented and discussed. Dichlorobenzene adsorbs weakly probably on Lewis acid sites through the chlorine atom. A very fast nucleophilic substitution on dichlorobenzene to a chlorophenate species occurs already at RT. On the contrary, adsorption of dibenzofuran is molecular, probably through the oxygen atom on Lewis sites. The aromatic rings of both molecules tend to be later oxidized to give carboxylate species. Parallel experiments with chloropropane show that dehydrochlorination occurs readily, hydrochloric acid is adsorbed quite weakly and that propene can be further oxidized. However, heavier oxidized species like cyclic anhydrides are also formed from chloropropane. The data suggest that the dechloration step of the phenyl ring could be not critical. On the contrary, the building-up of aromatic compounds from smaller molecules is possible and the oxidation of phenyl ring can be slow near reaction conditions. The possibility that the reaction between phenate species and chlorobenzenes give the “de novo” synthesis of dioxins is envisaged.
ISSN:0926-3373
1873-3883
DOI:10.1016/S0926-3373(02)00116-9