Loading…

Accumulation of glucosinolate, oil, and erucic acid in developing Brassica seeds

The glucosinolate-free meal from rapeseed can be used as livestock feed, whereas glucosinolate-rich meal can be used as a pesticide. It has also been shown that glucosinolate content in Brassica (rapeseed) seeds can be manipulated by application of chemicals. However, the stage of seed development w...

Full description

Saved in:
Bibliographic Details
Published in:Industrial crops and products 2003, Vol.17 (1), p.47-51
Main Authors: Bhardwaj, Harbans L, Hamama, Anwar A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The glucosinolate-free meal from rapeseed can be used as livestock feed, whereas glucosinolate-rich meal can be used as a pesticide. It has also been shown that glucosinolate content in Brassica (rapeseed) seeds can be manipulated by application of chemicals. However, the stage of seed development when potential chemical treatments could be applied has not been clearly identified. Thus, an experiment was conducted to evaluate accumulation of glucosinolate, oil, and erucic acid in developing seeds of rapeseed lines. These included lines that were classified as low or high for glucosinolate content. The florets of eight rapeseed lines were tagged at the 50% flowering stage and were sequentially harvested at 26, 28, 30, 33, 35, 37, 40, 42, 44, 47, 49, and 52 days after flowering (DAF). The oil content in both the high and low-glucosinolate lines increased approximately by a factor of four from 26 to 52 DAF. The oil content accumulation was not affected by glucosinolate content. Erucic acid content in the oil was significantly higher in low glucosinolate lines compared with high glucosinolate lines on 28 and 40 DAF. Developing seeds were most amenable to change in erucic acid content at approximately 37 DAF. The glucosinolate contents in high glucosinolate lines started to increase significantly at 26 DAF and continued up to 33 DAF. However, the glucosinolate content in the low glucosinolate lines increased only from 33 to 35 DAF. This indicates that the greatest accumulation of glucosinolate in developing rapeseed seeds may occur at approximately 26 DAF.
ISSN:0926-6690
1872-633X
DOI:10.1016/S0926-6690(02)00058-4